Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.

Identifieur interne : 002158 ( Main/Exploration ); précédent : 002157; suivant : 002159

Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.

Auteurs : Miroslav Oborník [Canada] ; Beverley R. Green

Source :

RBID : pubmed:16093570

Descripteurs français

English descriptors

Abstract

Heme biosynthesis represents one of the most essential metabolic pathways in living organisms, providing the precursors for cytochrome prosthetic groups, photosynthetic pigments, and vitamin B(12). Using genomic data, we have compared the heme pathway in the diatom Thalassiosira pseudonana and the red alga Cyanidioschyzon merolae to those of green algae and higher plants, as well as to those of heterotrophic eukaryotes (fungi, apicomplexans, and animals). Phylogenetic analyses showed the mosaic character of this pathway in photosynthetic eukaryotes. Although most of the algal and plant enzymes showed the expected plastid (cyanobacterial) origin, at least one of them (porphobilinogen deaminase) appears to have a mitochondrial (alpha-proteobacterial) origin. Another enzyme, glutamyl-tRNA synthase, obviously originated in the eukaryotic nucleus. Because all the plastid-targeted sequences consistently form a well-supported cluster, this suggests that genes were either transferred from the primary endosymbiont (cyanobacteria) to the primary host nucleus shortly after the primary endosymbiotic event or replaced with genes from other sources at an equally early time, i.e., before the formation of three primary plastid lineages. The one striking exception to this pattern is ferrochelatase, the enzyme catalyzing the first committed step to heme and bilin pigments. In this case, two red algal sequences do not cluster either with the other plastid sequences or with cyanobacterial sequences and appear to have a proteobacterial origin like that of the apicomplexan parasites Plasmodium and Toxoplasma. Although the heterokonts also acquired their plastid via secondary endosymbiosis from a red alga, the diatom has a typical plastid-cyanobacterial ferrochelatase. We have not found any remnants of the plastidlike heme pathway in the nonphotosynthetic heterokonts Phytophthora ramorum and Phytophthora sojae.

DOI: 10.1093/molbev/msi230
PubMed: 16093570


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.</title>
<author>
<name sortKey="Obornik, Miroslav" sort="Obornik, Miroslav" uniqKey="Obornik M" first="Miroslav" last="Oborník">Miroslav Oborník</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Botany, University of British Columbia, Vancouver, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Botany, University of British Columbia, Vancouver, BC</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Green, Beverley R" sort="Green, Beverley R" uniqKey="Green B" first="Beverley R" last="Green">Beverley R. Green</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:16093570</idno>
<idno type="pmid">16093570</idno>
<idno type="doi">10.1093/molbev/msi230</idno>
<idno type="wicri:Area/Main/Corpus">002246</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002246</idno>
<idno type="wicri:Area/Main/Curation">002246</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002246</idno>
<idno type="wicri:Area/Main/Exploration">002246</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.</title>
<author>
<name sortKey="Obornik, Miroslav" sort="Obornik, Miroslav" uniqKey="Obornik M" first="Miroslav" last="Oborník">Miroslav Oborník</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Botany, University of British Columbia, Vancouver, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Botany, University of British Columbia, Vancouver, BC</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Green, Beverley R" sort="Green, Beverley R" uniqKey="Green B" first="Beverley R" last="Green">Beverley R. Green</name>
</author>
</analytic>
<series>
<title level="j">Molecular biology and evolution</title>
<idno type="ISSN">0737-4038</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Chlorophyta (genetics)</term>
<term>Chlorophyta (metabolism)</term>
<term>Diatoms (genetics)</term>
<term>Diatoms (metabolism)</term>
<term>Eukaryotic Cells (metabolism)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Transfer, Horizontal (MeSH)</term>
<term>Heme (biosynthesis)</term>
<term>Heme (genetics)</term>
<term>Models, Genetic (MeSH)</term>
<term>Photosynthesis (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Plastids (MeSH)</term>
<term>Rhodophyta (genetics)</term>
<term>Rhodophyta (metabolism)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cellules eucaryotes (métabolisme)</term>
<term>Chlorophyta (génétique)</term>
<term>Chlorophyta (métabolisme)</term>
<term>Diatomées (génétique)</term>
<term>Diatomées (métabolisme)</term>
<term>Hème (biosynthèse)</term>
<term>Hème (génétique)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Photosynthèse (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Plastes (MeSH)</term>
<term>Rhodophyta (génétique)</term>
<term>Rhodophyta (métabolisme)</term>
<term>Symbiose (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Transfert horizontal de gène (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Heme</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Hème</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chlorophyta</term>
<term>Diatoms</term>
<term>Heme</term>
<term>Photosynthesis</term>
<term>Rhodophyta</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chlorophyta</term>
<term>Diatomées</term>
<term>Hème</term>
<term>Photosynthèse</term>
<term>Rhodophyta</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chlorophyta</term>
<term>Diatoms</term>
<term>Eukaryotic Cells</term>
<term>Rhodophyta</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellules eucaryotes</term>
<term>Chlorophyta</term>
<term>Diatomées</term>
<term>Rhodophyta</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Evolution, Molecular</term>
<term>Gene Transfer, Horizontal</term>
<term>Models, Genetic</term>
<term>Phylogeny</term>
<term>Plastids</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Modèles génétiques</term>
<term>Phylogenèse</term>
<term>Plastes</term>
<term>Symbiose</term>
<term>Séquence d'acides aminés</term>
<term>Transfert horizontal de gène</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Heme biosynthesis represents one of the most essential metabolic pathways in living organisms, providing the precursors for cytochrome prosthetic groups, photosynthetic pigments, and vitamin B(12). Using genomic data, we have compared the heme pathway in the diatom Thalassiosira pseudonana and the red alga Cyanidioschyzon merolae to those of green algae and higher plants, as well as to those of heterotrophic eukaryotes (fungi, apicomplexans, and animals). Phylogenetic analyses showed the mosaic character of this pathway in photosynthetic eukaryotes. Although most of the algal and plant enzymes showed the expected plastid (cyanobacterial) origin, at least one of them (porphobilinogen deaminase) appears to have a mitochondrial (alpha-proteobacterial) origin. Another enzyme, glutamyl-tRNA synthase, obviously originated in the eukaryotic nucleus. Because all the plastid-targeted sequences consistently form a well-supported cluster, this suggests that genes were either transferred from the primary endosymbiont (cyanobacteria) to the primary host nucleus shortly after the primary endosymbiotic event or replaced with genes from other sources at an equally early time, i.e., before the formation of three primary plastid lineages. The one striking exception to this pattern is ferrochelatase, the enzyme catalyzing the first committed step to heme and bilin pigments. In this case, two red algal sequences do not cluster either with the other plastid sequences or with cyanobacterial sequences and appear to have a proteobacterial origin like that of the apicomplexan parasites Plasmodium and Toxoplasma. Although the heterokonts also acquired their plastid via secondary endosymbiosis from a red alga, the diatom has a typical plastid-cyanobacterial ferrochelatase. We have not found any remnants of the plastidlike heme pathway in the nonphotosynthetic heterokonts Phytophthora ramorum and Phytophthora sojae.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16093570</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>04</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0737-4038</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>22</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2005</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Molecular biology and evolution</Title>
<ISOAbbreviation>Mol Biol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.</ArticleTitle>
<Pagination>
<MedlinePgn>2343-53</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Heme biosynthesis represents one of the most essential metabolic pathways in living organisms, providing the precursors for cytochrome prosthetic groups, photosynthetic pigments, and vitamin B(12). Using genomic data, we have compared the heme pathway in the diatom Thalassiosira pseudonana and the red alga Cyanidioschyzon merolae to those of green algae and higher plants, as well as to those of heterotrophic eukaryotes (fungi, apicomplexans, and animals). Phylogenetic analyses showed the mosaic character of this pathway in photosynthetic eukaryotes. Although most of the algal and plant enzymes showed the expected plastid (cyanobacterial) origin, at least one of them (porphobilinogen deaminase) appears to have a mitochondrial (alpha-proteobacterial) origin. Another enzyme, glutamyl-tRNA synthase, obviously originated in the eukaryotic nucleus. Because all the plastid-targeted sequences consistently form a well-supported cluster, this suggests that genes were either transferred from the primary endosymbiont (cyanobacteria) to the primary host nucleus shortly after the primary endosymbiotic event or replaced with genes from other sources at an equally early time, i.e., before the formation of three primary plastid lineages. The one striking exception to this pattern is ferrochelatase, the enzyme catalyzing the first committed step to heme and bilin pigments. In this case, two red algal sequences do not cluster either with the other plastid sequences or with cyanobacterial sequences and appear to have a proteobacterial origin like that of the apicomplexan parasites Plasmodium and Toxoplasma. Although the heterokonts also acquired their plastid via secondary endosymbiosis from a red alga, the diatom has a typical plastid-cyanobacterial ferrochelatase. We have not found any remnants of the plastidlike heme pathway in the nonphotosynthetic heterokonts Phytophthora ramorum and Phytophthora sojae.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Oborník</LastName>
<ForeName>Miroslav</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, University of British Columbia, Vancouver, BC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Green</LastName>
<ForeName>Beverley R</ForeName>
<Initials>BR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>08</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Evol</MedlineTA>
<NlmUniqueID>8501455</NlmUniqueID>
<ISSNLinking>0737-4038</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>42VZT0U6YR</RegistryNumber>
<NameOfSubstance UI="D006418">Heme</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000460" MajorTopicYN="N">Chlorophyta</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017377" MajorTopicYN="N">Diatoms</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005057" MajorTopicYN="N">Eukaryotic Cells</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022761" MajorTopicYN="N">Gene Transfer, Horizontal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006418" MajorTopicYN="N">Heme</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="Y">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018087" MajorTopicYN="N">Plastids</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000461" MajorTopicYN="N">Rhodophyta</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>8</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>8</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16093570</ArticleId>
<ArticleId IdType="pii">msi230</ArticleId>
<ArticleId IdType="doi">10.1093/molbev/msi230</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Colombie-Britannique </li>
</region>
<settlement>
<li>Vancouver</li>
</settlement>
<orgName>
<li>Université de la Colombie-Britannique</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Green, Beverley R" sort="Green, Beverley R" uniqKey="Green B" first="Beverley R" last="Green">Beverley R. Green</name>
</noCountry>
<country name="Canada">
<region name="Colombie-Britannique ">
<name sortKey="Obornik, Miroslav" sort="Obornik, Miroslav" uniqKey="Obornik M" first="Miroslav" last="Oborník">Miroslav Oborník</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002158 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002158 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16093570
   |texte=   Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16093570" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024